Study of Solvent Extraction of Mercury(II) with Dibenzo-18-Crown-6 from Hydrochloric Acid Solution into Benzene

Rita Giovannetti,*^a Vito Bartocci^b and Laura Petetta^a

^aCentro Interdip. Grandi Apparecchiature, Università di Camerino, 62032 Camerino, Italy ^bDipartimento di Scienze Chimiche, Università di Camerino, 62032 Camerino, Italy

The effect of Li⁺, K⁺, NH₄⁺, Ca²⁺ or Sr²⁺ in the extraction of mercury(\mathfrak{n}) as chloro-complexes from solutions in hydrochloric acid with dibenzo-18-crown-6 (DB18C6) into benzene and the stoichiometries of the reactions have been studied. The crystalline extracted species were characterized by morphological and microanalysis measurements by scanning electron microscopy and energy dispersive X-ray spectrometry respectively.

Crown ethers are a class of selective ligands that form fairly stable stoichiometric complexes with metal ions or cationic compounds with high selectivity; for this reason they have largely applied to analytical chemistry especially in solvent extraction.^{3,4} Here, we report a study of the extraction mechanism of mercury(π) as chloro-complexes with DB18C6 (L) into benzene in the presence of Li⁺, K⁺, NH₄⁺, Ca²⁺, Sr²⁺ and the characterization of the solid extracted complex by morphological and microanalysis measurements.

The study has showed that mercury(II) was prevalently extracted as HgCl4²⁻ by forming ion-pair compounds $[(L_2M_2)^{2+}(HgCl_4)^{2-}]$ $(M = Li^+, K^+)$ or NH⁺), or $\begin{array}{l} [(LM)^{2+}(HgCl_4)^{2-}] & (M=Ca^{2+} \quad or \quad Sr^{2+}) \quad and \\ [(LH)^+(HHgCl_4)^{-}]. & The \ extractability \ of \ Hg^{II} \quad in \ the \end{array}$ presence of these cations decreased in accordance with their ionic diameter (Fig. 1). The log K_{Mex} values ($K_{M,ex}$ = extraction conditional constants) were: 3.03 ± 0.09 for $[(L_2K_2)^{2+}(HgCl_4)^{2-}]$, 2.76 ± 0.02 for $[(L_2Li_2)^{2+}(HgCl_4)^{2-}]$, 2.71 ± 0.03 for $[(LNH_4)_2^{2+}(HgCl_4)^{2-}]$, 0.86 ± 0.01 for [(LH)⁺(HHgCl₄)⁻], 1.76 ± 0.03 for [(LCa)²⁺(HgCl₄)²⁻] and 2.05 ± 0.03 for [(LSr)²⁺(HgCl₄)²⁻]. The global conditional extraction constants $(K_{M,H,ex})$ increased with HCl concentration for the growth of the $[(LH)^+(HHgCl_4)^-]$ species. Morphological and microanalysis measurements of the DB18C6 and (DB18C6)KCl crystals show characteristic needle-shaped structures, while, for (DB18C6)₂K₂HgCl₄ a highly modified sheet structure is seen.

Techniques used: inductively coupled plasma, UV-VIS spectroscopy, scanning electron microscopy, energy dispersive-X-ray spectrometry.

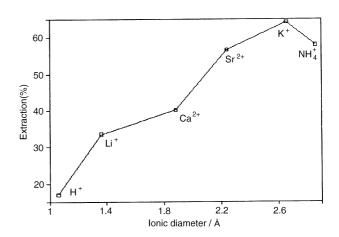

Table 1: Extraction conditional constants for the complexes $[(LM)^{2+}(HgCl_4)^{2-}]~(M=monovalent cation),~[(L_2M_2)^{2+}HgCl_4^{2-})]~(M=bivalent cation) and <math display="inline">[(LH_2)^{2+}(HgCl_4)^{2-})]~at~25\,^\circ\text{C}~(M=0.9\,\text{mol}\,\text{l}^{-1})~and~HCl=1.5\,\text{mol}\,\text{l}^{-1})$

Table 2: Analytical data of extracted complex mixtures of $L_2K_2HgCl_4$, LH_2HgCl_4 and LKCl with DB18C6 ($1.3 \times 10^{-2} \text{ mol } l^{-1}$), KCl (0.9 mol l^{-1}) and HCl ($1.5 \text{ mol } l^{-1}$)

References: 13

Fig. 2: Extraction of Hg^{II} as a function of HCl concentrations by a benzene solution of DBI8C6 $(1.30\times10^{-2}\,mol\,l^{-1}).$

Fig. 3: Concentration of $[(LH)^+(HHgCl_4)^-]$ species as a function of HCl concentration for a benzene solution of DB18C6 $(1.30 \times 10^{-2} \text{ mol } l^{-1})$.

Fig. 1 Extraction of Hg^{II} as function of ionic diameter of cations. Conditions: Hg^{II} = $8.00 \times 10^{-5} \text{ mol I}^{-1}$ in HCl (1.50 mol I⁻¹); KCl, SrCl₂, CaCl₂, NH₄Cl or LiCl (0.90 mol I⁻¹); DB18C6 (1.30 × 10⁻² mol I⁻¹)

Fig. 4: $\log K_{M,H,ex}$ as a function of HCl concentration and ionic strength.

Fig. 5: $\log K_{M,H,ex}$ as a function of HCl concentration and ionic strength.

Fig. 6: Scanning electron micrographs of DBl8C6 and solid extracted complex.

Fig. 7: EDS spectrum obtained during microanalysis of $(DB18C6)_2K_2HgCl_4$ and $(DB18C6)H_2HgCl_4$ crystals.

Fig. 8: Scanning electron micrographs of a mixture of $(DB18C6)_2K_2HgCl_4$ and (DB18C6)KCl crystals and backscattered electron image of the same region.

Fig. 9: EDS spectra obtained during microanalysis of a mixture of $(DB18C6)_2K_2HgCl_4$, $(DB18C6)H_2HgCl_4$ and (DB18C6)KCl crystals in the light and grey zone of Fig. 5.

Fig. 10: Scanning electron micrographs showing fuller details of $(DB18C6)_2K_2HgCl_4$ and $(DB18C6)H_2HgCl_4$ corresponding to the light zone in the backscattered electron image.

Received, 11th August 1998; Accepted, 2nd February 1999 Paper E/8/06361C

References cited in this synopsis

- 3 H. K. Frensdorff, J. Am. Chem. Soc., 1971, 93, 4684.
- 4 Macrocyclic Compounds in Analytical Chemistry; Chemical Analysis, ed. Yu. A. Zolotov, Wiley, New York, 1977, vol. 143, ch. 3.

J. Chem. Research (S), 1999, 299 J. Chem. Research (M), 1999, 1401–1414

^{*}To receive any correspondence (*e-mail:* Giovannetti
bartocci@ camserv.unicam.it>).